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Final Progress Report
1. Forward:

The thrust of the work completed is an investigation on the effect of an electric field
on the synthesis and densification of complex materials. Experimental investigations
were made on the field effect in the synthesis of (a) solid solution precursors for
nanoscale modulated composites, (b) a high temperature ceramic with relatively high
fracture toughness, (c) macro-alloyed high temperature silicides, and (d) hard
materials of boride composites with highly oriented precipitates. Modeling studies on
the effect of the electric field (current) on synthesis reactions were also made. In
addition, an important new direction in the completed work was the investigation of
the simultaneous synthesis and densification of nanometric materials. The latter work
has led to the issuance of a US Patent and a pending application for an International
Patent. The work was facilitated by the use of the Spark Plasma Synthesis (SPS)
apparatus, the only one of its kind in the US.
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3. STATEMENT OF THE PROBLEM STUDIED:

The imposition of an electromagnetic field (or a current) has been shown to have
a marked influence on a variety of materials processes, including crystal growth, defect
mobility, microstructure formation, phase transfdrrnations, and others [1]. The goal of our
work has been the investigation of the effect of an electric field on the synthesis and
consolidation of complex materials, including hard materials and nanocrystalline
materials. In this regard, the availability of the Spark Plasma Synthesis (SPS) apparatus
(obtained by funds from ARO) has made possible the accomplishment we have achieved.
As indicated before, our SPS unit is the only such facility in the US. Under the general
umbrella of field effect studies, we have conducted investigations on several aspect of
this topic, as detailed in the next section along with a summary of the most important
results.

4. SUMMARY OF THE MOST IMPORTANT RESULTS:

(a) Investigations on the Synthesis and Stability of AIN-SiC Composites
and Solid Solutions:

Motivated by a desire to increase the fracture toughness of AIN, the
feasibility of adding SiC to form a solid solution or a composite has been
investigated. Above about 1960°C AIN and the 2H (hexagonal) polytype of SiC
form extensive solid solutions [2], which decompose spinodally when annealed
below this temperature. The resulting product, which is a composite modulated at
the nanoscale, is reported to possess improved fracture toughness [3]. The
common method of synthesis of the solid solutions is to heat mixtures of AIN and
SiC (o or B) to higher than about 2100°C for up to up to 16 hrs. With field-
activation, solid solutions can be synthesized in seconds [4,5]. When forming
composites, the composition of the phases depended on the magnitude of the
applied field, and when forming solid solutions, the homogeneity (elemental
distribution) was influenced by the strength of the field.

The recent accomplishments in this area include investigations on the
formation of AIN-SiC solid solutions by direct nitridation and by induction field
activation. The reactions of Al + B-SiC and Al + Si + C with gaseous nitrogen
were used to synthesize the solid solutions. For the first case, the role of Py, and
powder compact relative density was investigated [6]. Solid solutions could be
formed at Py, = 6.0 MPa. It was also shown from quenched reactions that SiC
decomposes during the reaction and that the solid solution forms from the
solidification of a transient liquid phase. The homogeneity of the solid solutions
(as evaluated from FWHM measurements) was shown to have a dependence on
the relative density of the reactant compacts and on the nitrogen gas pressure, Pxy.
The most homogeneous solid solutions were obtained with low-density compacts
(= 25%), but the variation of the FWHM with relative density depended on the
gas pressure. For the case of nitridation of elemental reactants (Al + Si + C), the
feasibility of solid solution formation was also demonstrated [7]. A model of



dissolution-precipitation for the synthesis process was proposed to explain the
results. 4 most interesting observation was that of modulated AIN/SiC structures,
implying a spinodal decomposition during the cooling down of the product. Such
a decomposition was previously reported to take about 100 hrs at temperatures
below the miscibility gap [8].

~Solid solution synthesis was also accomplished using a solid as well as a
gas as a source of nitrogen (SisNg + C + Al +N3) [9]. In contrast to the case in
which the nitrogen source is gaseous, the use of Si3Ns made possible the
formation of solid solutions at ambient nitrogen pressure. Furthermore, and again
in contrast to the case where nitrogen comes from a gaseous source only, the
degree of homogeneity of the solid solutions decreased with increasing nitrogen
pressure. Activation by an inductive field was also investigated in the synthesis
of AIN-SiC solid solutions under pseudo-isostatic pressing [10].

In addition we have also investigated the reported stabilizing influence of
AIN on the structure (polytype) of SiC in AIN-SiC composites and the thermal
stability of SiC-AIN solid solutions [11]. The presence of AIN with Si + C
reactants did not enhance the formation of the 2H polytype of SiC, in contrast to
the reported stabilizing effect of the hexagonal AIN. The product was the cubic
3C-SiC polytype. The thermal stability of solid solutions formed by field
activation was investigated. The end product of heating a solid solution or a
composite in vacuum at 1700°C is 3C-SiC. This implies that after the initial loss
of AIN (due to decomposition) SiC transformed from the 2H to the 3C polytype.
These results indicate that the presence of AIN is crucial in the stability of the 2H
structure but not in the formation of this polytype.

(b) Synthesis of Complex Phases by Field-Activation

The ternary ceramic compound Ti3SiC; is reported to possess an unusual
combination of attractive properties: good electrical and thermal conductivites,
high ductility and fracture toughness, and good oxidation resistance [12]. It has a
relatively low ratio of hardness to Young’s modulus which has led some authors
to refer to it as a “ductile ceramic”, although this is subject to debate. Its
synthesis is rather complex, however, requiring relatively long times at high
temperatures in a hot press. Starting with elemental reactants, we have been able
to synthesize nearly fully-dense samples using electric field activation [13]. The
products of this method were purer than those obtained by SHS and had a smaller
average grain size than those obtained by hot pressing. The lack of dependence of
microhardness on the applied force is viewed as indication of the small grain size.
The thermal stability and oxidation resistance of this 312 compound was also
investigated. Vacuum annealing at temperature in the range 1600-2000°C resulted
in the formation of a TiC surface layer while annealing in air at 1000°C resulted,
expectedly, in a TiO, surface layer. TGA studies provided two substantially
different dependences of the rate constant on temperature over low and high



temperature ranges. The surface layer contained two oxides (TiO; and SiO,) at
low temperatures and only TiO, at high temperatures. In light of EPMA results, a
two-step oxidation process was proposed and discussed in terms of
thermodynamic calculations.

Another investigation was focused on the preparation and characterization
of materials in the TiB,-WB;,-CrB; system. Regions of extensive solid solubilities
exit for these borides, and when such solid solutions are annealed at lower
temperatures, a second phase (W-rich) precipitates in platelet-like form giving the
potential for enhanced mechanical properties similar to the case of fiber-
reinforced composites. The common synthesis approach of the solid solutions
involves long time (8hr) annealing at high temperatures (2100°C)[14]. Even at
these conditions the product uniformity is not high. In our investigation, we have
demonstrated the feasibility of synthesizing relatively pure solid solutions using
the SPS method at 1900°C [15]. With annealing, we observe the spinodal-like
precipitate of (W,Ti,Cr)B, and the B-WB precipitates in the form of thin (0.4-0.7
nm thick) layers. A dependence of phase composition, density, and
microhardness on the temperature of synthesis was observed. The density varied
from 78 to 94% over the temperature range 1400-1900°C and the microhardness
varied from 7.0 to 22.7 GPa over the same range.

Silicides of transition metals have been identified as the next generation
high-temperature structural materials, particularly in such applications as gas
turbines [16]. Among these, MoSi, has received considerable attention and is
currently used in electric furnace heating elements. There are two problems
associated with the potential application of this material: the temperature
limitation related to the melting of the SiO, surface oxide layer, and the ductile-
brittle transition temperature (1200°C), below which its fracture toughness drops
to an unacceptable level (2-3 MPa.m'?). Our recent investigation on MoSi, has
focused on the first problem. Qur approach to increase the working temperature
in an oxidizing environment is to alloy MoSi; with Al. We have been successful in
synthesizing dense (99%) MoSi;xAly with 0.4 < x < 1.0 by electric field
activation using the SPS. Oxidation studies were conducted on this C40 structured
material as well as one with x= 0.7. The temperature dependence of the parabolic
rate constants for the oxidation of MoSij gAlo4 and MoSi; 3Aly7 was determined
for the range 1470-1725K. :

(c) Simultaneous Synthesis and Densification of Nanometric Materials

The product of most methods of preparation of nanomaterials is in
powdered form and thus requires an additional processing step to obtain dense
bodies. Typically the nanopowders are hot-pressed or sintered at relatively high
temperatures. While there are cases where exposure to such high temperatures
does not lead to grain growth because of kinetic constraints [17-20], in many
other cases grain growth remains a serious concern. The difficulty in obtaining
dense nanomaterials has been given as a reason for the paucity of data on




mechanical properties [21], as was pointed out before. We have recently
developed a method in which the simultaneous synthesis and densification can be
achieved. The preliminary results have led to the issuance of a US Patent [22]
and an application for an International Patent (covering Europe, Canada, and
Japan) has been filed. We have demonstrated the feasibility of this method with
preliminary results on the preparation of dense nanometric intermetallics (FeAl
[23], AlsNb [24]), ceramics (MoSi; [23,25]), and composites (TiN/TiB; [26]). The
process involves the co-milling of reactants in a planetary mill to achieve
intermixing and crystallite size reduction, but to avoid formation of a significant
amount of a reaction product. The appropriate milling conditions (ball/powder
ratio, rpm, and milling time) are determined to produce the smallest crystallite
size for the reactant components. The milled nanocrystalline materials are then
cold-pressed and introduced into the SPS apparatus. They are then subjected to
pulsed high DC current while under a uniaxial pressure. Real-time measurements
of temperature, pressure, current, and sample volume displacement (shrinkage)
are made during the synthesis and densification process.

The initiation of reactions among the nanocrystalline powders occurred at
markedly lower temperatures (lower by several hundreds of degrees) than in
microcrystalline powders, in agreement with observations reported by others [27].
In most cases, the reaction and densification is complete within a few minutes, as
indicated by the abrupt volume change. In the case of FeAl formation, the
process took 2-3 min and the reaction between Fe and Al was complete. A local
phase analysis (EDAX) showed the composition of the FeAl phase to be 51.5 at%
Fe. The density of the product was found to be in the range 98-99%. Using a
Williamson-Hall analysis on the line broadening of the XRD results, the
crystallite size of the FeAl was determined to be in the range 35-65 nm. Using the
same approach, dense nanocrystalline MoSi, was synthesized with a crystallite
size in the range 30-60 nm. Results on the TiN/TiB, composite showed the
product to be nanostructured in both phases with the crystallite size ranges for
TiN and TiB; to be 48-53 nm and 46-63 nm, respectively.

(d)  Modeling of Current-Induced SPS Synthesis Reactions

To provide an understanding for the role of the current in the SPS
synthesis, we have carried out a simulation analysis on the assumption that a
major contribution of the current is thermal, i.e., Joule heating. As indicated
above, there is strong evidence that other contributions can arise from the
application of the current [28,29-35], but thermal effects are significant,
nevertheless. Due to resistive heating, the passage of a current raises the
temperature of the sample up to the “ignition temperature”. After ignition the rise
in temperature is due to both electrical and chemical energy inputs. The
implication of this is that the reaction takes place everywhere at once, in a manner
referred to as “volume” or “simultaneous” combustion (as opposed to “wave
combustion™). It is anticipated that the temperature profiles in these two cases will
be markedly different, with significant implications on phase and microstructural




developments during synthesis. Steep temperature gradients can lead to non-
equilibrium phase quenching and to reduced grain growth.

The model was based on the following Fourier relationship in cylindrical
coordinates:

ar 9 ar\ a
o ar(rc(Tn)r—) az(K(TYC) az)

where p is the density, C,, is the heat capacity, k is the thermal conductivity, o is
the electrical conductivity, ¢ is the electrostatic potential, r is the sample radius, T
is temperature, t is time, Q is the enthalpy of the chemical reaction, ¢ is the molar
coefficient (aA + bB = cC), and yc is the molar fraction per unit volume of the
product. Furthermore, the model was designed to account for heat loss at the
surfaces of the cylindrical sample according to boundary condition criteria [36].
The results of this simulation showed, contrary to expectations of volume
combustion, that the mode of combustion depended on the size (radius) of the
sample for the cases of SiC and MoSi,. With the increase in radius from 1 to 2
cm, the combustion process in SiC changes from a primarily volume mode to a
wave mode. Such a transition was found to be materials-system dependent. In the
case of MoSi, synthesis, mode transition takes place as the radius increases from
2to3 cm.
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Seminar

Z. A. Munir, “Electric Field Activated Combustion Synthesis,” Workshop on
"Enhanced Synthesis, Processing, and Properties of Materials with Electric and
Magnetic Fields," sponsored by US Army Research Office, Johns Island, SC, May
16-19,1999. Invited Presentation

Z. A. Munir, “Activation of Self-Propagating Combustion Synthesis by Electric
Fields,” Department of Materials Science, Gansu University of Technology, Lanzhou,
China, September 8, 1999. Invited Seminar

Z. A. Munir, “Simultaneous Synthesis and Densification by Field Activation,” NEDO
International Symposium on FGMs, sponsored by the New energy and Industrial
Technology Development Organization (NEDO), Ministry of International Trade and
Industry (MITI), Tokyo, Japan, October 21-22, 1999. Invited Presentation

Z. A. Munir, “One-Step Synthesis and Densification of Monolithic and FGM
Materials by Electric Field Activation,” Workshop on “Functionally Graded Materials
in the 21% Century: Trends and Forecasts”, Tsukuba City, Japan, March 26-28, 2000.
Invited Presentation

Z. A. Munir, “Modeling and Experimental Studies on the Effect of Thermophysical
Properties on Field-Activated Combustion Synthesis Reactions,” Tenth International
Conference on High-Temperature Materials Chemistry, Jiilich, Germany, April 10-
14, 2000. Invited Keynote Paper

6. Scientific Personnel

The following individuals were involved in some aspect of the research summarized
above:

Z. A. Munir, Principal Investigator, Professor of Materials Science and Dean of the
College of Engineering

J. W. Lee, Postdoctoral Fellow

E. M. Corrillo-Heian, PhD Student

J. Woolman, PhD Student

M. Manshi, Professor, Riyukoku Unoversity, Japan, collaborator

G. Cao, Professor, University of Cagliari, Italy, collaborator

R. Orru, Professor, University of Cagliari, Italy, collaborator



7. Patents

~ Z. A. Munir, F. Charlot, F. Bernard, and E. Gaffet, “One-Step Synthesis and
Consolidation of Nanophase Materials”:

o US Patent No.6,200,515; issued March 13, 2001..

e International Patent Application (Europe, Canada, and Japan), filed May 5, 2000.
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